Abstract

The electron-transfer oxidation-reduction chemistry for the alkyl derivatives of iron and cobalt porphyrins [( por ) M III − R ] has been characterized on the basis of cyclic voltammetric and controlled-potential-electrolysis measurements. The electrogenerated anions of iron and cobalt porphyrins [( por ) M − and ( por −·) M −] are strong nucleophiles that react with alkyl halides ( RX ) via a nucleophilic displacement process to form metal-carbon bonds [( por ) M - R and ( por −·) M - R ]. The difference in the reduction potentials for RX and ( por ) M II provides an approximate measure of the ( por ) M - R bond-formation free energy (−ΔG BF ). The −ΔG BF values for iron porphyrins (14–35 kcal mol−1) and for cobalt porphyrins (20-38 kcal mol−1) depend on the electron density of the porphyrin ring ( OEP > TPP > Cl 8 TPP > F 20TPP) and the structure of the alkyl group (1° > 2° > 3°). Thus, the apparent metal-carbon bond energy (−ΔG BF ) for ( OEP ) Fe III- Bu -n is 28 ± 2 kcal mol−1, and for [( MeO )4 TPP ] Co III- Bu -n is 36 ± 2 kcal mol −1. The ( por −·) M − dianions react with carbon dioxide in an electrocatalysed reduction cycle to give CO and CO 32− via the apparent transient formation of a metal-carbon bond [( por −·) M - C ( O ) O −; −Δ G BF ≥ 12 kcal mol −1 for iron porphyrins].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.