Abstract

The Aerospace Corporation, in support of the Department of Energy (DOE) Electric Vehicle Project, has undertaken two activities related to defining the possible characteristics of the mid-1980s electric passenger car. The first activity, an investigation of the potential performance and cost characteristics through computer modeling, was supported by the Argonne National Laboratory, General Research Corporation, Jet Propulsion Laboratory, Lawrence Livermore National Laboratory, and NASA/Lewis Research Center. That investigation was restricted to a 4-passenger, all-electric car similar to the DOE Electric Test Vehicle-One (ETV-1) developed by the General Electric Company and the Chrysler Corporation. The study effort was completed in February 1981. The second effort currently underway is an electric vehicle (EV) applications research study that is part of a government/industry collaborative effort. Based on the computer modeling results, the state of technology for the mid-1980s, 4-passenger electric car could achieve an urban driving range of 80 to 100 miles with acceleration competitive with a comparable-size, diesel-powered car. Top speeds and ramp accelerations compatible with highway driving also appear achievable. These conclusions assume that the batteries being developed through DOE funding--improved lead-acid, zinc/nickel oxide, iron/nickel oxide, and zinc/chloride--will achieve their currently established performance goals in mass production. The purchase price of a 4-passenger electric car with a 100-mile range is projected to be at least 50 percent higher than that of a comparable internal combustion engine (ICE) vehicle. However, life-cycle costs for a 4-passenger, 100-mile-range car are predicted to range from slightly lower to moderately higher than those of a comparable ICE vehicle depending on petroleum costs and the cost and cycle life of the batteries. The eventual cost and performance of the mid-1980s electric car will be influenced greatly by the trade-offs associated with battery weight and cost versus vehicle payload and range requirements. In general, cost and performance results tend to indicate the desirability of pursuing the development of a 2-passenger car and/or a less than 100-mile-range car if the market for these types of vehicles appears sufficiently attractive. For the second effort, The Aerospace Corporation will subcontract an electric vehicle applications research study to identify the vehicle attributes most likely to influence consumer purchasing decisions. The Statement of Work for this study was prepared by a Steering Committee composed of representatives of the major domestic automobile manufacturers, the EV supply industry, the electric utility industry, and other interested organizations. As part of this effort, it was necessary to define the characteristics of the mid-1980s electric car and its expected competition in that time frame. Vehicle characteristics were selected based on a consensus of the Steering Committee members. The projected characteristics of the baseline electric car defined by the Steering Committee agree quite closely with those predicted in the modeling work mentioned earlier. For the conduct of the study, it has been predicted that the baseline electric car will achieve a 75-mile range, accelerate somewhat more slowly than a comparable ICE vehicle, and perform satisfactorily on highways. The monthly ownership and operation cost (at current gasoline prices) and purchase price are estimated to be 30 and 50 percent higher, respectively. Assuming a more optimistic battery purchase price and replacement rate, the vehicle monthly cost is predicted to be equal to that of a comparable-size ICE vehicle. Competitive vehicles in the mid-1980s are assumed to be powered by gasoline, diesel, or an alternative fuel such as methanol. The fuel economy of these vehicles in urban driving is estimated to be 40 to 50 mpg, and the acceleration is projected to be similar to or somewhat slower than today's ICE vehicle. It is anticipated that the results of the applications study will help focus future DOE and industry research and development efforts on those areas that will most satisfy consumer needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call