Abstract

We report on the formation of Néel-type magnetic bubble skyrmions at room temperature in [Pt/Co/Ir]3 multilayered thin films after an in-plane magnetic field treatment. Polar magneto-optical Kerr Effect (p-MOKE) microscopy images show that the dendritic magnetic configurations observed after AC demagnetization evolve into magnetic bubble skyrmions after the application and subsequent removal of an in-plane magnetic field. Micromagnetic simulations were used to systematically investigate the role of the in-plane magnetic field magnitude, misalignment of the sample, and the Dzyaloshinskii-Moriya interactions (DMI) in generating bubble skyrmions during the field treatment. The simulations show that in-plane fields slightly below the saturation field are the most effective at producing skyrmions, and, furthermore, a small field angle away from the sample plane not only leads to improved skyrmion formation but also provides a means to select the skyrmion polarity where the direction of the out-of-plane component of the field is opposite to the direction of the skyrmion cores. This field treatment scheme leads to a simple and reliable way to create magnetic bubble skyrmions in multilayered thin films with DMI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.