Abstract

Zika virus (ZIKV) is an emerging mosquito-borne pathogen that can cause global public health threats. In the absence of effective antiviral medications, prevention measures rely largely on reducing the number of adult mosquito vectors by targeting juvenile stages. Despite the importance of juvenile mosquito control measures in reducing adult population size, a full understanding of the effects of these measures in determining mosquito phenotypic traits and in mosquito-arbovirus interactions is poorly understood. Pyriproxyfen is a juvenile hormone analog that primarily blocks adult emergence, but does not cause mortality in larvae. This mechanism has the potential to work in combination with other juvenile sources of mortality in nature such as predation to affect mosquito populations. Here, we experimentally evaluated the effects of juvenile exposure to pyriproxyfen and predatory mosquito Toxorhynchites rutilus on Aedes aegypti phenotypes including susceptibility to ZIKV infection and transmission. We discovered that combined effects of pyriproxyfen and Tx. rutilus led to higher inhibition of adult emergence in Ae. aegypti than observed in pyriproxyfen or Tx. rutilus treatments alone. Adult body size was larger in treatments containing Tx. rutilus and in treatments mimicking the daily mortality of predation compared to control or pyriproxyfen treatments. Susceptibility to infection with ZIKV in Ae. aegypti was reduced in predator treatment relative to those exposed to pyriproxyfen. Disseminated infection, transmission, and titers of ZIKV in Ae. aegypti were similar in all treatments relative to controls. Our data suggest that the combination of pyriproxyfen and Tx. rutilus can inhibit adult Ae. aegypti emergence but may confer a fitness advantage in survivors and does not inhibit their vector competence for ZIKV relative to controls. Understanding the ultimate consequences of juvenile mosquito control measures on subsequent adults’ ability to transmit pathogens is critical to fully understand their overall impacts.

Highlights

  • Zika virus (ZIKV) is an emerging infectious pathogen that causes public health issues in many regions of the world

  • Mosquito control approaches primarily depend on lowering the number of potential adult mosquito vectors by inhibiting juvenile stages to reduce the risk of pathogen

  • We determined the effects of juvenile exposure to pyriproxyfen and predatory mosquito Toxorhynchites rutilus on adult Aedes aegypti traits, including infection with Zika virus

Read more

Summary

Introduction

Zika virus (ZIKV) is an emerging infectious pathogen that causes public health issues in many regions of the world. Primarily a mosquito-borne agent, ZIKV may be transmitted sexually [5], through blood transfusion [6], and from mother-to-child [7,8], modalities which further complicate control strategies and ZIKV epidemiology [2,9]. Viral infection in human usually results in mild symptoms; ZIKV has been implicated in neurological complications resulting in Guillain-Barresyndrome (i.e., acute inflammatory polyneuropathy) and microcephaly (i.e., severe decrease in the head circumference) in newborn babies, making it a serious public health threat [10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call