Abstract

Simple SummaryFarmed livestock, particularly dairy cows, are the largest source of ammonia (NH3) emissions to the atmosphere in Europe and other parts of the developed world. Generally, more than 80% of the total agricultural NH3 emissions in Europe come from manure slurries (mixtures of urine and faeces) with hydrolysis of urea nitrogen (N) in urine, and ammonification of the organic N fraction in faeces as the two main sources of the NH3. It is also worth noting that the concentration of these two main sources of NH3 emissions from manure slurries (particularly urea N in urine) is positively associated with dietary protein content.The effect of dietary crude protein (CP) level on ammonia (NH3) emissions from slurry from lactating Holstein-Friesian cows was studied. Twenty-four-hour total collections of faeces and urine were made from 24 lactating Holstein-Friesian cows fed four total mixed rations containing 141, 151, 177, and 201 g CP/kg DM (6 cows/diet). The collected urine and faeces from each cow were combined to form 2 kg duplicate slurry samples (weight/weight; fresh basis) according to the proportions in which they were excreted. NH3 emissions from the slurry samples were measured, during 0–24 and 24–48 h intervals in six open-circuit respiration chambers maintained at two temperatures (8 or 18 °C). NH3 emissions for the 0–24 and 0–48 h intervals, as well as the average daily emissions, increased linearly with increasing dietary CP level. Increasing the temperature from 8 to 18 °C positively affected NH3 emissions, but only for the 0–24 h interval. In situations where direct measurements are impossible, NH3 emissions from slurry can be predicted accurately using equations based on dietary CP level supported by either urinary nitrogen, faeces nitrogen, or both. In summary, increasing dietary CP level linearly increased average daily NH3 emissions from slurry, with a 5.4 g increase for each 10 g increase in dietary CP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.