Abstract
This study aimed to investigate the effects of different defatting methods of black soldier fly (Hermetia illucens) larvae meal (BSFM) on the metabolic energy and nutrient digestibility in laying hens. Sixty young laying hens (Hy-Line W-36) aged 63 days were randomly divided into two groups (G1 and G2), each with five replicates of six hens housed in individual cages. Group G1 was fed 25% pressed black soldier fly meal (BSFMp) and 75% basal diet, and Group G2 was fed 25% extracted black soldier fly meal (BSFMe) and a 75% basal diet. Both diets included 5 g/kg chromium oxide as an external marker. A 7-day preliminary trial was followed by a 4-day experimental period. The results indicate that pressing and extracting significantly affected the digestibility of crude fat and total energy in BSFM, with BSFMp showing significantly higher crude fat digestibility than BSFMe. Similarly, total energy digestibility was also significantly higher in BSFMp. However, there were no significant differences in dry matter, organic matter, and crude protein digestibility between the two processing methods. The apparent metabolic energy values of BSFMp and BSFMe were 16.34 and 12.41 MJ/kg, respectively, showing a significant difference. The nitrogen-corrected metabolic energy values were 15.89 MJ/kg in BSFMp and 11.93 MJ/kg in BSFMe, indicating a highly significant difference. The digestibility of arginine and leucine in BSFMp was significantly higher than in BSFMe, while differences in lysine, cystine, threonine, tryptophan, and isoleucine were not significant. In conclusion, both defatting methods of BSFM had no adverse effects on the metabolic energy and nutrient digestibility in young laying hens, but BSFMp demonstrated better effects on the digestibility of metabolic energy and nutrients in the feed for young laying hens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.