Abstract
The effects of pore curvature and surface heterogeneity on the adsorption of water on a graphitic surface at 298 K were investigated using a Grand Canonical Monte Carlo (GCMC) simulation. Slit and cylindrical pores are used to study the curvature effects. To investigate the surface heterogeneity the functional group and the structural defect on the surface were specifically considered. The hydroxyl group (OH) is used as a model for the functional group and the water potential model proposed by Müller et al. is used to calculate the water interaction. For the homogeneous cylinder, the pore filling occurs at a pressure lower than the saturation pressure of the water model, while it is greater in the case of homogeneous slit pore. The size of hysteresis loop is more sensitive to the length of cylinder than that of the slit, and it increases with decreasing pore length. The isotherms of water in cylindrical pores are found to depend on the position and the concentration of the functional group. The pore filling pressure is lower with an increased number and/or with the position of the functional group. The structural defect shows significant effects on the adsorption isotherm in shifting to a lower pore filling pressure when it is located at a position away from the pore entrance. The adsorption of water on the heterogeneous surface was studied and it was found that the simulated isotherm can describe the behaviour of water on Graphitized Thermal Carbon Black (GTCB) satisfactorily. The water cluster grows mostly along the surface for the case of finite extent surface, while for the slit the pore grows in all directions but the preference is a direction perpendicular to the pore wall. Reasons for the direction of growth will be discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have