Abstract
In this paper, we studied vapor-liquid equilibria (VLE) and adsorption of ethylene on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers. Simple models of a one-center Lennard-Jones (LJ) potential and a two-center united atom (UA)-LJ potential are investigated to study the impact of the choice of potential models in the description of VLE and adsorption behavior. Here, we used a Monte Carlo simulation method with grand canonical Monte Carlo (GCMC) and Gibbs ensemble Monte Carlo ensembles. The one-center potential model cannot describe adequately the VLE over the practical range of temperature from the triple point to the critical point. On the other hand, the two-center potential model (Wick et al. J. Phys. Chem. B 2000, 104, 8008-8016) performs well in the description of VLE (saturated vapor and liquid densities and vapor pressure) over the wide range of temperature. This UA-LJ model is then used in the study of adsorption of ethylene on graphitized thermal carbon black and in slit pores. Agreement between the GCMC simulation results and the experimental data on graphitized thermal carbon black for moderate temperatures is excellent, demonstrating that the potential of the GCMC method and the proper choice of potential model are essential to investigate adsorption. For slit pores of various sizes, we have found that the behavior of ethylene exhibits a number of features that are not manifested in the study of spherical LJ particles. In particular, the singlet density distribution versus distance across the pore and the angle between the molecular axis and the z direction provide rich information about the way molecules arrange themselves when the pore width is varied. Such an arrangement has been found to be very sensitive to the pore width.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have