Abstract
Saline wastewaters are prevalent in various industries and pose challenges to stable biological treatment. Increasing monovalent cation concentrations are commonly reported to deteriorate treatment and settling performance, while divalent cations can enhance flocculation and settling. However, many previous studies were performed at relatively low salinities and reports conflict on whether concentrations of monovalent cations, divalent cations, or their ratio (M/D) are most critical. This study investigates whether addition of divalent cations shows the same benefits at high salinity (∼40 g NaCl.L−1) and whether divalent ion concentration or M/D is a better predictor of enhancement. Nine sequencing batch reactors were operated at 0.8 M NaCl or KCl monovalent salt concentration, and the concentration of divalent cations (Ca2+ and Mg2+) was varied. M/D was found to be the critical factor that consistently influenced sludge characteristics. It was particularly important in describing hydrophobicity, sludge volume index (SVI) and specific oxygen uptake rate (SOUR), with rpartial of −0.879, 0.971 and 0.966 respectively in models that had an r2adj greater than 0.93. Lower M/D also increased biomass concentrations and reduced extracellular polysaccharides, the latter which in turn correlated strongly with many shape and surface charge measures. The specific monovalent salt (Na+ or K+) influenced treatment performance, biomass concentrations, hydrophobicity, SOUR, extracellular protein and SVI. The specific divalent cation was only important in describing SVI, where Mg2+ was beneficial. Overall, this study shows that addition of divalent cations can greatly benefit high salinity activated sludge systems by improving the sludge structure, settling and organic removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.