Abstract
This study investigated the effects of repeated starvation and feeding on the performance of a sequencing batch reactor (SBR) used for treating saline wastewater. The effects of aerobic and non-aerobic conditions on the sludge during starvation were evaluated to recover the performance of the SBR in terms of floc size and pollutant removal after resuming wastewater feeding. The floc size, fractal dimension, sludge volume index (SVI), specific oxygen uptake rate (SOUR), and pollutant removal efficiency were monitored. Experiment results revealed that the floc size and fractal dimensions decreased during starvation under both aerobic and non-aerobic conditions and increased after re-feeding wastewater. However, the difference in floc physical characteristics and performance depended on the starvation condition and was pronounced as starvation and re-feeding were repeated. The floc size and fractal dimensions decreased from 152.7 to 72.2 and 1.98 to 1.79 at the end of the fourth starvation period, resulting in deterioration of the sludge settleability and effluent quality. On the other hand, the floc size and fractal dimensions decreased from 158.7 to 135.7 and 1.95 to 1.81 at the end of the fourth starvation period but remained relatively constant after sludge adaptation. Some correlations were observed between the parameters monitored in this study. The results showed that maintaining the sludge under non-aerobic conditions was an effective strategy for reducing the effects of repeated starvation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.