Abstract

Abstract Fracturing fluids are commonly formulated with fresh water to ensure reliable rheology. However, fresh water is becoming more costly, and in some areas, it is difficult to obtain. Therefore, using produced water in hydraulic fracturing has received increased attention in the last few years. A major challenge, however, is its high total dissolved solids (TDS) content, which could cause formation damage and negatively affect fracturing fluid rheology. The objective of this study is to investigate the feasibility of using produced water to formulate crosslinked-gel-based fracturing fluid. This paper focuses on the compatibility of water with the fracturing fluid system and the effect of salts on the fluid rheology. Produced water samples were analyzed to determine different ion concentrations. Solutions of synthetic water with different amounts of salts were prepared. The fracturing fluid system consisted of natural guar polymer, borate-based crosslinker, biocide, surfactant, clay controller, scale inhibitor, and pH buffer. Compatibility tests of the fluid system were conducted at different cation concentrations. Apparent viscosity of the fracturing fluid was measured using a high-pressure high-temperature rotational rheometer. All rheology tests were conducted at a temperature of 180°F and were conducted according to API 13m procedure with a three-hour test duration. Fluid breaking test was also performed to ensure high fracture and proppant pack conductivity. Produced water analysis showed a TDS content of 125,000 ppm, including Na, Ca, K, and Mg ion concentrations of 36,000, 10,500, 1,700, and 700 ppm, respectively. Results indicated the potential of produced water to cause formation damage. Therefore, produced water was diluted with fresh water and directly used to formulate the fracturing fluid. Divalent cations were found to be the main source of precipitation, and the reduced amounts of each ion were determined to prevent precipitation. The separate and combined effects of Na, K, Ca, and Mg ions on the viscosity of the fracturing fluid were also studied. Fluid viscosity was found to be significantly affected by the concentrations of divalent cations regardless of the concentrations of monovalent cations. Monovalent cations reduced the viscosity of fracturing fluid only in the absence of divalent cations, and showed no effect in the presence of Ca and Mg ions. Water with reduced concentrations of monovalent and divalent cations showed the most suitable environment for polymer hydration and crosslinking. This paper contributes to the understanding of the main factors that enable the use of produced water for hydraulic fracturing operations. Maximizing the use of produced water could reduce its disposal costs, mitigate environmental impacts, and solve fresh water acquisition challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call