Abstract

Considerable evidence suggests that free radicals engendered by redox-active metals, particularly iron and copper, are causative agents in reperfusion injury following ischemia. This study demonstrates that perfusion of the isolated rat heart with a buffer containing zinc, a non-redox active metal similar to copper in its coordination chemistry, inhibits the development of ventricular arrhythmias during reperfusion. Zinc was employed as the bishistidine complex, Zn—His 2, to maintain solubility and permeability. Zn—His 2 exerted an antiarrhythmic activity as hearts spent a longer time in normal sinus rhythm and a shorter time in ventricular fibrillation during reperfusion following 10 min of regional ischemia. However, Zn—His 2 also produced a negative inotropic and chronotropic effect, evident during equilibration and ischemia. In the course of experiments which began in Israel and continued in the U.S. it was necessary to use two different sources of rats. Hearts from the two sources manifested different sensitivities to the concentration of Zn—His 2, although their physiological effects were similar. Differential activity responses were noted for antiarrhythmic activity, negative inotropic and chronotropic properties, and toxicity. In both groups of untreated hearts the incidence of ventricular fibrillation after ischemia was 100%. Ventricular fibrillation was reduced to 17% at 37.5 μM Zn—His 2 in the U.S.-bred rat hearts and to 9% at 200 μM Zn—His 2 in those from Israel. These changes in Zn—His 2 treated animals were accompanied by a decrease in lactate dehydrogenase release from the myocardium during reperfusion. None of the protective effects was due to histidine alone. These results indicate that zinc prevents ventricular arrhythmias during reperfusion following regional ischemia and may prevent membrane damage, possibly, by reduction of free radical formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.