Abstract

Under different geometrical features and in Iraqi environmental circumstances, a numerical and experimental investigation of a solar chimney was carried out the study that dealt with an important aspect, which is to increase the surface area of the absorbent plate while maintaining the outer dimensions and limits by using three model of absorber surface (flat plate, Triangular Vgrooved corrugated plate and trapezoidal corrugated absorber plate). the work was carried out using a single vertical solar chimney of a single room has a volume 27m3 modeling 1m3 placed on the southern wall of wooden chamber having a size of (1 × 1 ×1) m and absorber plate (0.9×0.99) m. In addition to studying the effect of the air gap width (0.1, 0.2) m on the test model with all absorber plate are used at different inclination angles inward (0°,5°,10° and 15°) the test model. All variable was taken with varying solar radiation intensity (150,250,350,450,550 and 700) W/m2 along the day time. Numerical simulation of the test models using the Ansys Fluent program V18.1 to solve the governing continuity, momentum and energy equations with a standard (k-ε)standard turbulence model associated with laws of the wall along solid boundaries were solved numerically, Experimental and Theoretical results of the present study show that the optimum model of the test absorber plates with air gap width and inclination angle according to Air change per hour (ACH) calculation is Triangular V-grooved absorber plate with air gap width 0.2m and inclination angle 10°. For this inclination angle and air gap width at I700 W/m2 the ACH is about 10 % higher than model1 (flat absorber plate) and more than model3(trapezoidal plate) by 17%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.