Abstract

BackgroundChitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine. MethodsThe focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties. Significant FindingsThe results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call