Abstract

BackgroundCO2 is one of the dominant greenhouse gases that causes global warming and a series of serious environmental problems. The catalytic chemical conversion of CO2 into value-added products is one of the attractive approaches. MethodsA novel zeolitic imidazolate framework (ZIF-67) has been successfully synthesized by incorporating choline chloride and thiosemicarbazide-based deep eutectic solvent onto the surface of ZIF-67, denoted as ChTSC@ZIF-67. The material's textural and physical characteristics were analyzed using powder XRD, TGA, zeta potential, SEM, and BET surface area measurements. Significant FindingsThe utilization of ChTSC@ZIF-67 as a catalyst for the conversion of epoxides and carbon dioxide into cyclic carbonates, in the absence of a co-catalyst or solvent, was investigated under various experimental conditions. Optimum conditions (3 mg catalyst, 4.0 bar CO2 pressure, 80 °C, and 3 h reaction time) led to the production of diverse cyclic carbonates with excellent yield and selectivity. The synergistic effect between the active site in ZIF-67 and the deep eutectic solvent may be the main reason for the high catalytic activity. Furthermore, the catalyst retains its heterogeneous nature for more than six cycles, exhibiting no substantial decline in yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.