Abstract

This study aimed to investigate the microhardness, surface roughness, and field emission scanning electron microscopes (FE-SEM) images of three different single-shade composites (Essentia Universal, Omnichroma, and Vittra APS Unique) in food simulation liquids such as ethanol, citric acid, and distilled water. Three single-shade universal composites were selected for this study. For each composite resin group, 92 samples (5-mm diameter and 2-mm depth) were prepared in plexiglass molds (N = 276). Then, samples were separated into four groups randomly consisting of 23 samples each (10 for hardness, 10 for roughness, and 3 for FE-SEM analysis). Three groups were immersed in food-simulating liquids (FSL)-citric acid (0.02N), distilled water, and 75% ethanol stored in a glass at 37°C for the next 7 days to simulate a wet oral environment. Control samples were stored in an opaque-light-proof box at room temperature. After the conditioning period, roughness and microhardness were measured, and FE-SEM analysis was performed. For statistical analysis, the two-way analysis of variance and Tukey honestly significant difference tests were used to evaluate roughness and microhardness (P < 0.05). There was a statistically significant difference between the composites in terms of roughness and hardness averages (P = 0.001; P < 0.05). Omnichroma showed the most surface changes in ethanol storage, whereas Vittra Unique showed the most surface changes in citric acid storage such as Essentia. FSL that mimic various oral environments affect single-shade universal resin composite restorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call