Abstract

The effect of substitution Pb2O3 by CuO content was studied for 75% Li2B4O7+(25−x)Pb2O3+xCuO glass system where x=0, 5, 10, 15, 20, and 25wt%. The mechanical and radiation shielding properties were evaluated for the investigated glass samples. The mechanical properties included Young's, shear, bulk, longitudinal, Poisson ratio, and micro-hardness were computed theoretically based on the packing factor (Vi) and dissociation energy (Gi) of the metal oxides constituting the existing glass samples using the Makishima–Mackenzie model. The obtained results depicted the insertion of CuO enhances the different mechanical parameters up to 20mol% of the investigated LBPCu glasses. Furthermore, the radiation shielding properties were studied for the investigated LBPCu glass using the Monte Carlo N-particle transport code (MCNP-5) simulation. MCNP-5 was used to detect the simulated linear attenuation coefficient (LAC) and then mass attenuation coefficient (MAC) and other factors based on various gamma-ray sources with energies of 0.24, 0.66, 1.17, 1.33, and 1.40MeV. The results showed that LAC's highest value decreased from 0.578 to 0.320cm−1 for glasses LBPCu0 and LBPCu25, respectively, at low energy of 0.284MeV. Moreover, the effective and equivalent atomic numbers (Zeff and Zeq), buildup factor (EBF), and absorption buildup factor (EABF) were evaluated for the investigated LBPCu glass using the BXCOM program. The results revealed that the shielding properties of the investigated glasses improved by the insertion of CuO content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call