Abstract

The substitution of La2O3 by Tb2O3 was studied for glass samples with a chemical composition described by: 75P2O5+(25−x) La2O3+xTb2O3, where x=5, 10, 15, 20mol%. The mechanical properties were predicted via the Makishima–Mackenzie model. The study demonstrated that when increasing the Tb2O3 content from 5 to 20mol%, the elastic moduli of the glasses decreased, while the dissociation energy, packing density, and micro-hardness increased. In addition, the radiation shielding properties were studied using the MCNP5 code, which was utilized to simulate the linear attenuation coefficient (LAC) of the investigated samples. Furthermore, the mass attenuation coefficients (MAC) of the glasses were determined. The highest MAC was reported for the sample with 20mol% of Tb2O3 and decreased from 0.358 to 0.0515cm2/g between 0.184 and 1.408MeV. Furthermore, the effective atomic number (Zeff), equivalent atomic number (Zeq), exposure buildup factor (EBF), and the energy absorption buildup factor (EABF) of the glasses were calculated utilizing BXCOM software. The substitution of La2O3 by Tb2O3 was revealed to enhance the shielding features of the TLP samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call