Abstract

To compare the fatigue strength of lithium disilicate ceramic crowns when cemented as a compound structure, as a function of the manufacturing process and the type of ceramic variation. A typodont maxillary first premolar was prepared for an all-ceramic crown in accordance with the manufacturer's guidelines for monolithic ceramic crowns (IPS e. max®; Ivoclar-Vivadent, Liechtenstein). 60 dies were duplicated in a polymer with a Young's Modulus closely matched to dentine (Alpha die, Schütz GmbH). Three different crown fabrication techniques were used (n = 20): (i) Manually applied wax spacer and pressed-crown; (ii) digitally scanned preparation, CAD-printed wax-pattern (D76PLUS, Solidscape Inc.) and pressed-crown; (iii) digitally scanned preparation and machined-crown (CEREC-inLab® v3.6 Sirona GmbH). Resin-based cement (Variolink-II®, Ivoclar-Vivadent, Liechtenstein) was employed with a standardised mechanised cementation technique to apply a controlled axial cementation pressure [Universal testing machine (Lloyd LRX®, Lloyd Materials Testing Inc)]. The samples were subjected to fatigue life testing with a cyclic impact load of 453 N for 1.25 × 106cycles at 37C⁰ and 1 Hz frequency until the point of fracture. There was a significant difference in the resistance to fatigue loading between the three groups. Weibull probability analysis and the α and β Weibull parameters indicate that the teeth restored with a 'Manually-applied wax spacer and pressed-crown' are best able to resist cyclic fatigue loading. They also have the most uniform interface geometry. Teeth restored with IPS e. max® crowns constructed by manually applied wax spacer and pressing, have a more uniform interface and a greater structural integrity than wax CAD-printed patterns or CAD-CAM crowns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call