Abstract

In this work, the effect of using of dicumyl-peroxide (DCP) (2, 5 & 8 phr) and co-agent triallyl-cyanurate (TAC) (2, 4 & 6 phr) as cross-linking system as well as multi-walled carbon nanotubes (MWCNTs) (5, 8 και 10 phr) as a filler, for ethylene-propylene-diene terpolymer (EPDM) was investigated. Differential scanning calorimetry (DSC) was employed in order to study the progress of the cross-linking reaction, based on the exothermic vulcanization peaks of isothermal (at 160, 170, 180, 190 °C) and non-isothermal experiments (with heating rates 5, 10, 25, 50 °C min−1). The autocatalytic model was successfully applied to the results of isothermal experiments and the activation energy (Ea) of the reaction was calculated, based on the Arrhenius equation. The Ozawa-Kissinger equations were also applied to the data obtained from the non-isothermal study. From the results obtained from isothermal DSC experiments, an increase was observed in the reaction rates accompanied with a decrease in Ea with the increase of DCP content, whereas a proportional relationship between TAC content and the enthalpy and Ea of the reaction was recorded. The incorporation of MWCNT’s in EPDM increased its Ea. From the non-isothermal DSC experiments, a significant increase in the enthalpy and Ea of the cross-linking reaction was observed at higher DCP content, whereas TAC content did not show any notable effect on the reaction. Based on the results of this research, it is concluded that the increase of peroxide content facilitates the vulcanization of EPDM, whereas inhibition was observed by the incorporation of MWCNT’s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.