Abstract

AbstractThe structure and properties of polyolefin blends of ethylene–propylene–diene terpolymer (EPDM) and polypropylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured with PP under shear with dicumyl peroxide (DCP) at different shear conditions (blend–cure). Blends were also prepared for comparison from EPDM which were dynamically cured in the absence of PP and blended later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastic composition were studied. In blend–cure, the melt viscosity increased with increasing DCP concentration in blends of 75% EPDM and 25% PP, but it decreased with increasing DCP concentration in blends of 75% PP and 25% EPDM. In cure–blend, however, the melt viscosity increased with increasing DCP concentration for all compositions. The melt viscosity decreased with increasing intensity of the shear mixing presumably due to the formation of the smaller segregated microdomain of the crosslinked EPDM gels in both blend–cure and cure–blend materials. The crystallization rate was higher in EPDM/PP blends than in PP homopolymer. The crystallization rates for various blending conditions were also compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call