Abstract

The vortex melting transition T m in several untwinned and twinned crystals is measured resistively in fields up to 8T. A Lindemann criterion for vortex lattice melting is obtained in addition to a sharp hysteresis in the magnetoresistance at B m supporting a first-order phase transition. The anisotropy of twin boundary pinning and its reduction of the ‘kink’ in ϱ( T) associated with the first-order melting transition is discussed in samples with very dilute twin boundaries. We also report on the direct suppression of the melting transition by intrinsic pinning for H ‖ ab and by electron-irradiation-induced point defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.