Abstract
In-plane complex surface impedance of a Bi2Sr2CaCu2Oy single crystal was measured in the mixed state at 40.8 GHz.The surface reactance, which is proportional to the real part of the effective penetration depth, increased rapidly just above the first-order vortex-lattice melting transition field and the second magnetization peak field.This increase is ascribed to the decrease in the superfluid density rather than the loss of pinning.This result indicates that the vortex melting transition changes the electronic structure as well as the vortex structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.