Abstract

This paper presents a stacking sequence optimization for maximizing the buckling load of rotationally restrained laminated composite rectangular plates with different boundary conditions resting on an elastic Pasternak foundation subjected to uniaxial and biaxial in-plane static loads. The Mindlin Plate Theory (MPT), which considers the first-order shear deformation effect, is used to extract the characteristic equations of the plates under in-plane loading, including plate-foundation interaction. The buckling problem of the laminated plates is analyzed by the Rayleigh–Ritz method. The aim of optimization is to maximize the buckling load and post-buckling load capacity by using the Genetic Algorithm (GA) method, and the design variable is the ply orientation. The results showed that the optimal orientation, θ, of the laminated square plate under biaxial in-plane loading with various conditions is 〖45〗^∘ approximately. The existence of a foundation, clamped boundary conditions, and high aspect ratio lead to increase the optimal orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.