Abstract

In this paper, the mechanical buckling of a functionally graded nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes (SWCNTs) subjected to uniaxial and biaxial in-plane loadings is investigated. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction and vary continuously and smoothly according to two types of the symmetric carbon nanotubes volume fraction profiles. The material properties of SWCNT are determined according to molecular dynamics (MDs), and then the effective material properties at a point are estimated by either the Eshelby–Mori–Tanaka approach or the extended rule of mixture. The equilibrium and stability equations are derived using the Mindlin plate theory considering the first-order shear deformation (FSDT) effect and variational approach. The results for nanocomposite plate with uniformly distributed CNTs, which is a special case in the present study, are compared with those of the symmetric profiles of the CNTs volume fraction. A numerical study is performed to investigate the influences of the different types of compressive in-plane loadings, CNTs volume fractions, various types of CNTs volume fraction profiles, geometrical parameters and different types of estimation of effective material properties on the critical mechanical buckling load of functionally graded nanocomposite plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call