Abstract
The purpose of this study was to look into the relationship between breast size and mammographic breast density in women and breast radiation dose on full-field digital mammography (FFDM), as well as the factors that influence radiation dose. The study included a total of 2,060 FFDM images from 515 consecutive participants. The participants were divided into two groups: those exposed to high doses (>3 mGy) and those exposed to low doses (<3 mGy). Moreover, the researchers analyzed the relationship between mean glandular dose (MGD) of the breast and patient age, compressed breast thickness, compression force, mammographic breast composition, and mammographic breast size. The mean mammographic breast volume was 936.2 ± 425.2 (114.5-3,018) mL, and the mean compressed breast tissue thickness was 56.75 ± 10.44 mm. Moreover, the mean MGD in the high-dose group was 3.51 ± 0.48 mGy and 1.92 ± 0.56 mGy in the low-dose group. The high-dose group had greater breast thickness, diameters, volume, compression pressure, and surgical rate. However, the high-dose group was younger and had less dense breasts. In multivariate logistic regression analysis, the most important predictors of dose determination were breast thickness [odds ratio (OR): 1.178, 95% confidence interval (CI): 1.156-1.200, p<0.001], history of previous surgery (OR: 2.210, 95% CI: 1.417-3.447, p<0.001), compression force (OR: 1.008, 95% CI: 1.004-1.013, p<0.001), and breast density (OR: 1.873, 95% CI: 1.359-2.580, p<0.001). Women with larger breast volumes are subjected to higher doses of radiation. Therefore, breast-screening programs can be individualized to young women with larger breast volumes and women who have had breast-conserving surgery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have