Abstract

This study employed an ensemble machine learning approach to evaluate the effect of bioclimatic covariates on the prediction accuracy of soil total carbon (TC) in the Pannonian biogeoregion. The analysis involved two main segments: (1) evaluation of base environmental covariates, including surface reflectance, phenology, and derived covariates, compared to the addition of bioclimatic covariates; and (2) assessment of three individual machine learning methods, including random forest (RF), extreme gradient boosting (XGB), and support vector machine (SVM), as well as their ensemble for soil TC prediction. Among the evaluated machine learning methods, the ensemble approach resulted in the highest prediction accuracy overall, outperforming the individual models. The ensemble method with bioclimatic covariates achieved an R2 of 0.580 and an RMSE of 10.392, demonstrating its effectiveness in capturing complex relationships among environmental covariates. The results of this study suggest that the ensemble model consistently outperforms individual machine learning methods (RF, XGB, and SVM), and adding bioclimatic covariates improves the predictive performance of all methods. The study highlights the importance of integrating bioclimatic covariates when modeling environmental covariates and demonstrates the benefits of ensemble machine learning for the geospatial prediction of soil TC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.