Abstract

Background: Mesenchymal stem cells (MSCs) are widely used to treat various diseases, however, their proliferative potential reduces after a number of passages. It has been shown that some probiotics such as Bifidobacterium Bifidum (B. bifidum) affect the proliferation of various cell lineages. The present study aimed to investigate the effect of B. bifidum on the proliferation of rat bone marrow stromal cells (rBMSCs) and to develop a method for compensating their proliferation reduction after some passages. Methods: The present experimental study was conducted at Tehran University of Medical Sciences, Tehran, Iran, in 2017. The stromal cells were isolated from rBMSCs and their mesenchymal properties were confirmed by osteogenic and adipogenic differentiation media and staining. B. bifidum was cultured and the B. bifidum supernatant (BS) and bacterial cell mass (BCM) were extracted. The rBMSCs were treated with different concentrations of BS and BCM. The MTT assay was performed to measure the number of viable cells in the culture. Cell proliferation was analyzed using the paired-sample t test.Results: Cell proliferation increased as the concentration of bacteria was increased logarithmically (0, 0.1, 0.3, 0.9, 3, 9, 30 μL/mL). In comparison with BS, cells treated with BCM showed increased cell proliferation at lower concentrations. This effect was caused by removing the “de Man, Rogosa, and Sharpe” (MRS) broth medium from the BCM culture. The optimal concentration of bacteria with the most significant effect on rBMSCs proliferation was determined.Conclusion: A significant increase in the proliferation of stromal cells was observed; confirming the stimulatory potential of probiotics (B. bifidum) on various cells. The use of products containing probiotic bacteria can increase the proliferation potential of BMSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.