Abstract

Calcium phosphates (CaPs) have been investigated as substrates to promote bone formation both in vitro and in vivo. The aim of this study was to examine the proliferation and differentiation of rat bone marrow stromal cells (BMSCs) cultured on three-dimensional (3D) octacalcium phosphate (OCP) crystal assemblies. The cytotoxicity of OCP crystal assemblies was evaluated by measuring the lactate dehydrogenase (LDH) release from BMSCs during 10 h of incubation with OCP crystal assemblies. The proliferation of BMSCs on OCP crystal assemblies in medium with or without osteogenic supplements was also investigated using the MTT assay with tissue culture treated plastic (TP) as the control. The tissues formed by BMSCs cultured on OCP crystal assemblies for 24 days were examined following staining with haematoxylin and eosin (H&E), alkaline phosphatase (ALP) and Van Gieson's techniques. The influence of OCP crystal assemblies on mRNA expression of α chain of collagen type I (Coll-Ia), ALP and osteocalcin (OC), osteonectin (ON), osteopontin (OP), lumican, Cbfa1, EST317 and EST350 by the BMSCs were also investigated using semi-quantitative RT-PCR. Although OCP crystals were relatively cytotoxic compared with TP, proliferation of BMSCs occurred when seeded onto OCP crystal assemblies. BMSCs cultured on OCP demonstrated similar proliferation rates as found on the control and no significant difference ( P<0.05) in the number of cells cultured in medium supplemented with or without osteogenic additives on TP and OCP. The deposition of collagen and ALP were detected in tissue synthesised by BMSCs cultured on OCP crystals assemblies. OCP crystal assemblies down-regulated basal bone ECM proteins, including Coll-Ia, ON and lumican, in the first week of culture, whilst up-regulation of the same genes was observed after 24 days of culture. The observed down-regulation of Cbfa1 on OCP substrates was consistent with the negative effect of OCP crystal assemblies on the genes encoding bone ECM proteins. The up-regulation of OC mRNA expression by OCP crystal assemblies could be related to the requirement for synthesis of more OC proteins to control the concentration of calcium ions in culture medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call