Abstract

In order to elucidate the effect of stress concentration on the tensile strength of rigid polyurethane (PUR) foams, specimens with open circular holes and different ratios of hole diameter to specimen width were tested in tension. The reduction in the net-section strength of the specimens with a center hole ranged from 1% to 18% for neat foams and from 18% to 28% for foams produced from a nanoclay-filled PUR. The finite fracture mechanics approach, based on simultaneous application of the strength and fracture mechanics criteria of failure, yielded a reasonably accurate prediction of foam strength in the presence of stress concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.