Abstract

In the present work, a ballistic material-model development approach is combined with transient non-linear dynamics simulations of the projectile/armour interactions to explore the armour-hard-facing potential of multi-walled carbon nanotube (MWCNT) reinforced, poly-vinyl-ester-epoxy (PVEE)-matrix composite mats. This approach is applied to improving the ballistic-protection performance of E-glass fibre-mat reinforced PVEE-matrix laminate armour. Two different architectures of the MWCNT-reinforced/PVEE-matrix composite mats were considered: (a) a MWCNT-ply mat structure in which the MWCNT reinforcements are aligned parallel to the armour faces and (b) a MWCNT-forest mat structure in which the MWCNT reinforcements are aligned orthogonally to the armour faces. The projectile/armour interaction simulation results showed that, at low volume fractions of MWCNTs, both armour architectures yield no discernable increase in the armour ballistic-protection performance as measured by the armour. On the other hand, at high MWCNT volume fractions of MWCNTs, the first armour architecture remained ineffective whereas the second showed a minor improvement in the ballistic-protection performance relative to the corresponding monolithic armour. These results were rationalized using published experimental observations pertaining to the effect of MWCNTs on the in-plane and the through-the-thickness properties of fibre-mat/polymer-matrix composite materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.