Abstract

We study the destabilization mechanism in a unidirectional ring of identical oscillators, perturbed by the introduction of a long-range connection. It is known that for a homogeneous, unidirectional ring of identical Stuart-Landau oscillators the trivial equilibrium undergoes a sequence of Hopf bifurcations eventually leading to the coexistence of multiple stable periodic states resembling the Eckhaus scenario. We show that this destabilization scenario persists under small non-local perturbations. In this case, the Eckhaus line is modulated according to certain resonance conditions. In the case when the shortcut is strong, we show that the coexisting periodic solutions split up into two groups. The first group consists of orbits which are unstable for all parameter values, while the other one shows the classical Eckhaus behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.