Abstract

Purpose– The purpose of this study was to reuse cement kiln dust (CKD) in cement products and report the results of determining the long-term compression and flexural tensile strengths of mortars containing CKD as a partial replacement of sulfate-resistant cement (SRC). During the manufacturing of Portland cement, voluminous quantities of the byproduct dust are produced, which is commonly known as CKD. In the past decade, according to environmental requirements, many researchers have attempted to reuse CKD in cement products.Design/methodology/approach– The long-term compression and flexural tensile strengths of mortars containing CKD as a partial replacement of SRC were tested. The replacement ratios in this study were 0, 5, 10, 15 and 20 per cent. The specimens were exposed to a highly saline environment after normal curing in water for a 28-day period.Findings– The results indicated a slight increase in the strength of CKD–SRC mortar containing 10 per cent CKD and moderate sulfate resistance when the CKD ratio reached 20 per cent, as compared to the reference mortar. In addition, CKD did not adversely affect the properties of SRC mortar subjected to sulfate exposure, even after one year.Originality/value– The tests were inducted for the first time on SRC, and the new results can be used to produce an environmental-friendly concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call