Abstract

Our research focuses on expression patterns in human and mouse embryonic cardiomyocytes and endothelial cells at the single-cell level. We analyzed single-cell datasets containing different species, cardiac chambers, and cell types. We identified developmentally dynamic genes associated with different cellular lineages in the heart and explored their expression and possible roles during cardiac development. We used dynamic time warping, a method that aligns temporal sequences, to compare these developmental stages across two species. Our results indicated that atrial cardiomyocytes from E9.5 to E13.5 in mice corresponded to a human embryo age of approximately 5-6 weeks, whereas in ventricular cardiomyocytes, they corresponded to a human embryo age of 13-15 weeks. The endothelial cells in mouse hearts corresponded to 6-7-week-old human embryos. Next, we focused on expression changes in cardiac transcription factors over time in different species and chambers, and found that Prdm16 might be related to interspecies cardiomyocyte differences. Moreover, we compared the developmental trajectories of cardiomyocytes differentiated from human pluripotent stem cells and embryonic cells. This analysis explored the relationship between their respective developments and provided compelling evidence supporting the relevance of our dynamic time-warping results. These significant findings contribute to a deeper understanding of cardiac development across different species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call