Abstract
Hyperbaric oxygen therapy (HBOT), a therapy that have patients breath in pure oxygen in a pressurized chamber, has been long used as a treatment for conditions such as decompression sickness and carbon monoxide poisoning. Oxygen recently has been found to be an important component in skin rejuvenation, treatment of photoaging skin, and improvement in skin complexions. The interest in the use of HBOT for this purpose is continually growing and becoming more widespread. In addition to aging and genetic makeup, chronic UV radiation due to everyday exposure, especially UV-B, can greatly increase the rate of wrinkle formation through increasing skin angiogenesis and degradation of extracellular matrix molecules. The use of HBOT and hyperoxia conditions has been found to attenuate the formation of wrinkles from UV irradiation. It accomplishes the task by possibly inhibiting various processes and pathways involved such as the HIF1-α, VEGF, neutrophil infiltrations, and MMP-2 & MMP-9, which are directly involved with promoting skin angiogenesis in its active state. There are currently medical aesthetic clinics that are using oxygen therapy under high pressure applied directly to skin to reduce visible wrinkles but this procedure is not widespread yet due to more research that needs to be done on this topic. However, this treatment for wrinkles is definitely growing due to recent studies done showing the effectiveness of oxygen therapy on wrinkles. This review article will explore and summarize researches done on possible mechanisms dealing with the use of oxygen therapy for reduction of UVB-caused wrinkles, its side effects, and its possible future improvement and use in medicine.
Highlights
Hyperbaric oxygen therapy (HBOT), a therapy that have patients breath in pure oxygen in a pressurized chamber, has been long used as a treatment for conditions such as decompression sickness and carbon monoxide poisoning
In order for the HBOT to be used to its full potential in skin care, the exact mechanisms of how high oxygen concentration reduce formation of wrinkles and photoaging needs to be investigated
The level of HIF-1α protein has shown to be reduced under hyperoxic conditions, which suggests that it is degraded under high oxygen concentration and this can inhibit the expression of vascular endothelial growth factor (VEGF) and skin angiogenesis (Figure 1)
Summary
Hyperbaric oxygen therapy (HBOT), a therapy that have patients breath in pure oxygen in a pressurized chamber, has been long used as a treatment for conditions such as decompression sickness and carbon monoxide poisoning. The use of oxygen therapy as a process of skin rejuvenation and reduction of loss of elasticity leading to formation of lines and wrinkles are becoming increasingly widespread in skin care clinics because of increasing successful results of their usage due to developing technologies. Smoking causes skin aging and wrinkles because tobacco inhibits production of collagen and increase MMP and elastosis production, which degrades matrix proteins important for skin elasticity [12].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have