Abstract

The promotion of Electric Vehicles (EVs) has become a key measure of the governments in their attempt to reduce greenhouse gas emissions. However, range anxiety is a big barrier for drivers to choose EVs over traditional vehicles. Installing more charging stations in appropriate locations can relieve EV drivers’ range anxiety. To determine the locations of public charging stations, we propose two optimization models for two different charging modes - fast and slow charging, which aim at minimizing the total cost while satisfying certain coverage goal. Instead of using discrete points, we use geometric objects to represent charging demands. Importantly, to resolve the partial coverage problem (PCP) for networks, we extend the polygon overlay method to split the demands on the road network. After applying the models to Greater Toronto and Hamilton Area (GTHA) and to Downtown Toronto, we show that the proposed models are practical and effective in determining the locations of charging stations. Moreover, they can eliminate PCP and provide much more accurate results than the complementary partial coverage method (CP).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.