Abstract

The hot-carrier degradation behavior in a high voltage p-type lateral extended drain MOS (pLEDMOS) with thick gate oxide is studied in detail for different stress voltages. The different degradation mechanisms are demonstrated: the interface trap formation in the channel region and injection and trapping of hot electrons in the accumulation and field oxide overlapped drift regions of the pLEDMOS, depending strongly on the applied gate and drain voltage. It will be shown that the injection mechanism gives rise to rather moderate changes of the specific on-resistance (Ron) but tiny changes of the saturation drain current (Idsat) and the threshold voltage (Vth). CP experiments and detailed TCAD simulations are used to support the experimental findings. In this way, the abnormal degradation of the electrical parameters of the pLEDMOS is explained. A novel structure is proposed that the field oxide of the pLEDMOS transistor is used as its gate oxide in order to minish the hot-carrier degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call