Abstract

The rate of decomposition of nitrous oxide has been examined by pressure measurements, at temperatures between 500 and 900 °C and pressures between 10-2and 1 torr. The reaction is first order, but shows retardation by oxygen, but not nitrogen. Over the range of alloys, from Pd to nearly 40 at. % Pd, the velocity at 650 °C falls by a factor of 104, the apparent activation energy falls from 30 to 13 kcal/mole, and the retarding effect of oxygen falls to zero. Over this range of alloys the Fermi level which lies in thedband hardly changes but the concentration of thedband vacancies falls to zero. Over the range of alloys from 40 at. % Pd to Au the velocity at 650 °C remains constant but the apparent activation energy and frequency factor, which show an abrupt increase at 40 at. % Pd, show a continuous fall. The retarding effect of oxygen remains zero. In this range the Fermi level has entered thesband and increases to Au. A steady state treatment of an irreversible dissociative chemisorption of nitrous oxide, together with an oxygen chemisorption equilibrium, yields an equation for the velocity in quantitative agreement with the results found. It is also possible to account for the increase in apparent activation energy with oxygen coverage of the surface. The heat of adsorption of oxygen is derived as 32-2±2 kcal/mole, and the activation energy for chemisorption of nitrous oxide as 12-7 ±0-5 kcal/mole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call