Abstract

Abstract Thermal degradations of biomass corn leaves were studied for kinetic modeling. Thermogravimetric-differential analyzer runs at 5, 10, 20, and 30 °C min−1 heating rates were employed. Apparent activation energy and frequency factor values were calculated for first-order kinetics using several procedures. The procedure of Coats and Redfern showed 28.89 to 31.78 kJ mol−1 apparent activation energy and 15.5 to 157.12 min−1 frequency factor, respectively. Calculation of the apparent activation energy and frequency factor using Kissinger–Akahira–Sunose procedure gave 229.9–364.2 kJ/mol and 8.567 × 1023 and 1.13 × 1031 (min−1), respectively as the conversion increased from 0.1 to 0.9. The newly introduced excel solver procedure indicates a distribution activation energy over the entire range of conversion. For first-order reaction kinetics, the calculated apparent activation energy magnitudes ranged between 5.0 kJ mol−1 with frequency factor equals to 0.239 and 196.2 kJ mol−1 with frequency factor 2.89 × 1012 in the studied range. The low or high magnitudes of the calculated activation energy are not associated with a particular value of the conversion. The calculated apparent activation energies are related to the direct solution of the simultaneous equations that constitute the basis of the excel solver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call