Abstract

The influence of substituent effects and CO poisoning were examined during the hydrogenation/dehydrogenation of cycloalkenes (cyclohexene and 1- and 4-methylcyclohexene) on a Pt(111) single crystal. Reaction rates for both hydrogenation and dehydrogenation decreased when a methyl group was added to the cycloalkene ring. The location of a methyl group relative to the C C double bond was influential in the overall kinetics for both reaction pathways. All cycloalkenes demonstrated “bend-over” Arrhenius behavior, after which rates for hydrogenation and dehydrogenation decreased with increasing temperature (inverse Arrhenius behavior). This is explained in terms of a change in surface coverage of the reactive cycloalkene. The potential importance of hydrogen effects is discussed. Introduction of CO in the Torr pressure range (0.015 Torr) led to a decrease in turnover frequency and increase in apparent activation energy for both the hydrogenation and dehydrogenation of all cycloalkenes. Sum frequency generation (SFG) surface vibrational spectroscopy revealed that upon adsorption, the three cycloalkenes form a surface species with similar molecular structure. SFG results under reaction conditions in the presence of CO demonstrated that the cycloalkene coverage is low on a CO-saturated surface. Substituted cyclohexenes were more sensitive than cyclohexene to the presence of adsorbed CO, with larger increases in the apparent activation energy, especially in the case of dehydrogenation. A qualitative explanation for the changes in activity with temperature and the increase in apparent activation energy for cycloalkene hydrogenation/dehydrogenation in the presence of CO is presented from a thermodynamic and kinetic perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.