Abstract
(1) Background: The amino acid sequence elucidation of peptides from the gas phase fragmentation mass spectra, de novo sequencing, is a valuable method for the identification of unknown proteins complementary to Edman sequencing. It is increasingly used in shot-gun mass spectrometry (MS)-based proteomics experiments. We review the current state-of-the-art and use the identification of an unknown snake venom protein targeting the human tissue factor (TF) as an example to describe the analysis process based on manual spectrum interrogation. (2) Methods: The immobilized TF was incubated with a crude B. moojeni venom solution. The potential binding partners were eluted and further purified by gel electrophoresis. Edman degradation was performed to elucidate the N-terminus of the 31 kDa protein of interest. High-resolution MS with collision-induced dissociation was employed to generate peptide fragmentation spectra. Sequence tags were deduced and used for searches in the NCBI and Uniprot databases. Protein matches from the snake species were further validated by target MS/MS. (3) Results: Sequence tag D [K/Q] D [I/L] VDD [K/Q] led to a snake venom serine protease (SVSP) from lancehead B. jararaca (P81824). With target MS/MS, 24% of the SVSP sequence were confirmed; an additional 41% were tentatively assigned by data-independent MS. Edman sequencing provided information for 10 N-terminal amino acid residues, also confirming the match to SVSP. (4) Conclusions: The identification of unknown proteins continues to be a challenge despite major advances in MS instrumentation and bioinformatic tools. The main requirement is the generation of meaningful, high-quality MS peptide fragmentation spectra. These are used to elucidate sufficiently long sequence tags, which can subsequently be submitted to searches in protein databases. This basic method does not require extensive bioinformatics because peptide MS/MS spectra, especially of doubly-charged ions, can be analysed manually. We demonstrated the procedure with the elucidation of SVSP. While de novo sequencing quickly indicates the correct protein group, the validation of the entire protein sequence of amino acid-by-amino acid will take time. Reasons are the need to properly assign isobaric amino acid residues and modifications. With the ongoing efforts in genomics and transcriptomics and the availability of ever more data in public databases, the need for de novo MS sequencing will decrease. Still, not every animal and plant species will be sequenced, so the combination of MS and Edman sequencing will continue to be of importance for the identification of unknown proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.