Abstract

Host restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells. Both viruses could enter cells, initiate viral DNA replication and intermediate gene transcription. However, translation of viral intermediate gene was only detected in cells infected with VV-36hr, indicating that CP77 relieves host restriction at the intermediate gene translation stage in HeLa cells. Caspase-2 and -3 activation was observed in HeLa cells infected with VV-hr coupled with dramatic morphological alterations and cleavage of the translation initiation factor eIF4G. Caspase activation was reduced in HeLa cells infected with VV-36hr, indicating that CP77 acts upstream of caspase activation. Enhanced phosphorylation of PKR and eIF2α was also observed in cells infected with VV-hr and was suppressed by CP77. Suppression of eIF4G cleavage with the caspase inhibitor ZVAD did not rescue virus translation, whereas expression of a mutant eIF2α protein with an alanine substitution of serine at amino acid position 51 (eIF2αS51A) partially restored viral translation and moderately increased virus growth in HeLa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.