Abstract

The correlation between applied load and sliding speed on the wear behavior of tamarind wood was analyzed using statistical analysis. Dry sliding wear tests were conducted using the block-on-roller technique while mass loss was measured by using a micro balancer. The test specimens measured 20 mm by 20 mm by 10 mm and were made of tamarind wood. The roller which acted as the counter surface material was made of mild steel (120 HV), cut from a commercial mild steel bar (50 mm in diameter) measuring 300 mm in length. Dry sliding wear tests on tamarind wood was conducted using different sliding velocities (60 rpm, 95 rpm and 145 rpm) and applied using different loads (10 N, 20 N and 30 N). The test results were analyzed and inferred using linear correlation and regression. The results suggest that sliding speed and applied load have a significant and positive influence on mass loss. A direct correlation between applied load and sliding speed on the mass loss of tamarind wood was evident. Regression analysis indicated that the contribution of applied load and sliding speed on the mass loss of tamarind wood under dry sliding was at 82.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call