Abstract

Suppose that V is any inner ideal of L. The core of V is an inner ideal of L with special requirement. In this paper we prove. If L is a 4-dimension Lie algebra a with 1-dimensional derived , then the core of every inner ideal of L is zero. Moreover L containing a sandwich elements if L' not subset of Z and every element in L is sandwich if L' subset of Z. .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.