Abstract

The dissolution kinetics of most slightly soluble oxides and silicates are controlled by chemical processes at the surface. The reaction controlling steps can be interpreted in terms of a surface coordination model. In dilute acid solutions, in the absence of complex-forming ligands, the dissolution kinetics are controlled by the surface bound protons. The rate of the proton-promoted reaction of δ- Al 2 O 3 is R H = k H ( C H 3) 3 where C h 3 is the proton concentration per unit area on the oxide surface. The mechanism can be described by the attachment of three protons to the reaction site prior to the detachment of an Al species into the solution. The dissolution rate of BeO is proportional to (C H 2) 2. For δ- Al 2 O 3 at pH ⩽ 3.5 dissolution rate is independent of pH; at this pH maximum surface concentration of protons is reached. The organic ligand-promoted dissolution, R L , is of first order with respect to concentration of surface chelates: R L = k L {M ▪L} where {M ▪L} is the concentration of surface chelates per unit area. Detachable surface complexes result from surface coordination of metal ions of the hydrous oxides with bidentate ligands. Especially efficient are bidentate ligands that form mononuclear surface complexes. The sequence of rate constants shows that five- and six-membered chelate rings (oxalate, catechol, malonate and salicylate) enhance the dissolution reactions to a greater extent than seven-membered rings (phthalate, succinate). Monodentate ligands (benzoate ion), though readily adsorbed, do not enhance dissolution rates. However, they can inhibit dissolution by displacing ligands that catalyze this reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.