Abstract

PurposeRosuvastatin calcium (ROSCa) nanoparticles were fabricated by planetary ball mill to enhance ROSCa dissolution rate and bioavailability.MethodsMilling time factors (milling cycle time and number as well as pause time) were explored. The effect of different milling ball size, speed, and solid-to-solvent ratio were also studied using Box–Behnken factorial design. The fabricated nanoparticles were evaluated in term of physicochemical properties and long-term stability.ResultsThe obtained data revealed that the integrated formulation and process factors should be monitored to obtain desirable nanoparticle attributes in terms of particle size, zeta potential, dissolution rate, and bioavailability. The optimized ROSCa nanoparticles prepared by milling technique showed a significant enhancement in the dissolution rate by 1.3-fold and the plasma concentration increased by 2-fold (P<0.05). Moreover, stability study showed that the optimized formula of ROSCa nanoparticles exhibits higher stability in long-term stability conditions at 30°C with humidity of 60%.ConclusionFormulation of ROSCa as nanoparticles using milling technique showed a significant enhancement in both dissolution rate and plasma concentration as well as stability compared with untreated drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.