Abstract

Summary In order to resolve contradictions in addressing a soil moisture–precipitation feedback mechanism over West Africa and to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, we first validated various data sets (SMOS satellite soil moisture observations, NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models) with the Analyses Multidisciplinaires de la Mousson Africaine (AMMA) field campaign data. Based on this analysis, it was suggested that biases of data sets might cause contradictions in studying mechanisms. Thus, by taking into account uncertainties in data, it was found that the approach of consecutive dry days (i.e. a relative comparison of time-series) showed consistency across various data sets, while the direct comparison approach for soil moisture state and rainfall did not. Thus, it was discussed that it may be difficult to directly relate rain with soil moisture as the absolute value, however, it may be reasonable to compare a temporal progress of the variables. Based upon the results consistently showing a positive relationship between the consecutive dry days and rainfall, this study supports a negative feedback often neglected by climate model structure. This approach is less sensitive to interpretation errors arising from systematic errors in data sets, as this measures a temporal gradient of soil moisture state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call