Abstract
We consider two variants of orthogonal colouring games on graphs. In these games, two players alternate colouring uncoloured vertices (from a choice of min {mathbb {N}} colours) of a pair of isomorphic graphs while respecting the properness and the orthogonality of the partial colourings. In the normal play variant, the first player unable to move loses. In the scoring variant, each player aims to maximise their score, which is the number of coloured vertices in their copy of the graph. We prove that, given an instance with partial colourings, both the normal play and the scoring variant of the game are PSPACE-complete. An involution sigma of a graph G is strictly matched if its fixed point set induces a clique and vsigma (v)in E(G) for any non-fixed point vin V(G). Andres et al. (Theor Comput Sci 795:312–325, 2019) gave a solution of the normal play variant played on graphs that admit a strictly matched involution. We prove that recognising graphs that admit a strictly matched involution is NP-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.