Abstract

AbstractDepth first search is a natural algorithmic technique for constructing a closed route that visits all vertices of a graph. The length of such a route equals, in an edge-weighted tree, twice the total weight of all edges of the tree and this is asymptotically optimal over all exploration strategies. This paper considers a variant of such search strategies where the length of each route is bounded by a positive integer B (e.g. due to limited energy resources of the searcher). The objective is to cover all the edges of a tree T using the minimum number of routes, each starting and ending at the root and each being of length at most B. To this end, we analyze the following natural greedy tree traversal process that is based on decomposing a depth first search traversal into a sequence of limited length routes. Given any arbitrary depth first search traversal R of the tree T, we cover R with routes $$R_1,\ldots ,R_l$$ R 1 , … , R l , each of length at most B such that: $$R_i$$ R i starts at the root, reaches directly the farthest point of R visited by $$R_{i-1}$$ R i - 1 , then $$R_i$$ R i continues along the path R as far as possible, and finally $$R_i$$ R i returns to the root. We call the above algorithm piecemeal-DFS and we prove that it achieves the asymptotically minimal number of routes l, regardless of the choice of R. Our analysis also shows that the total length of the traversal (and thus the traversal time) of piecemeal-DFS is asymptotically minimum over all energy-constrained exploration strategies. The fact that R can be chosen arbitrarily means that the exploration strategy can be constructed in an online fashion when the input tree T is not known in advance. Each route $$R_i$$ R i can be constructed without any knowledge of the yet unvisited part of T. Surprisingly, our results show that depth first search is efficient for energy constrained exploration of trees, even though it is known that the same does not hold for energy constrained exploration of arbitrary graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.