Abstract

AbstractIn this paper, we showcase the class XNLP as a natural place for many hard problems parameterized by linear width measures. This strengthens existing W[1]-hardness proofs for these problems, since XNLP-hardness implies W[t]-hardness for all t. It also indicates, via a conjecture by Pilipczuk and Wrochna (ACM Trans Comput Theory 9:1–36, 2018), that any XP algorithm for such problems is likely to require XP space. In particular, we show XNLP-completeness for natural problems parameterized by pathwidth, linear clique-width, and linear mim-width. The problems we consider are Independent Set, Dominating Set, Odd Cycle Transversal, (q-)Coloring, Max Cut, Maximum Regular Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, Capacitated Vertex Cover and Bipartite Bandwidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.